Instead Siri usually performs a Google

12. září 2018 v 8:47
  Instead Siri usually performs a Google search and serves those results to the user - leaving users to do the last mile legwork of extracting an actual answer.
  plasticity's promise is to cut out that last step by returning the right answer directly to the user.
  "Our core technology uses deep learning to figure out the base level of NLp tags - so that's things like parts of speech, syntax dependency tree. So we use machine learning on the base to figure that out, and we use TensorFlow and Google's SyntaxNet module," says patel. "And then on top of that we've built custom C++ code that basically operates a lot more accurately and a lot faster than a lot of the competitors out there."
  Of course if the Internet is your oracle then there's limitless scope to return not truthful answers but full-on falsities, fake news and other skewed and prejudiced views - as indeed we 've already seen Google Home do. Oops. So how does plasticity avoid its technology falling into a similar trap and ensure accuracy in the answers its ApI can help provide?
  "What we do right now is we run it only over Wikipedia," says Sands on this. "Then the plan from there is to slowly expand whilst still maintaining that accuracy that you're talking about."
  The ApI has been more than 1.5 years in development at this point, and they claim "much higher accuracy and much higher speed" at parsing sentences than IBM Watson, for example.
  Initially, patel says they focused on areas that existing, keyword-based NLp systems we're handling well - such as lists - and then continued building out the complexity to handle other "linguistic edge cases".
  While they name Google as their main competitor at this point - given the company's stated aim of organizing the world's information, building systems that can understand text is a clear necessity for Mountain View's mission - even so they reckon there's room for another NLp player to offer similar services to the wider market.
  "[Google has] put a lot of work into understanding text on the Internet to do their instant answer question and answering… But we really think that there's still a space in the market for a solution for everybody else out there, who's not Google, who's not putting in hundreds of millions of dollars of investment into machine learning - and we really think they've got no ambition to become a leader in NLp. For example Apple actually outsources their question and answering on Siri to Wolfram Alpha.
  "So we think there's a significant place in the market to be the natural language processing solution and knowledge graph solution for all the other artificial intelligence products out there."
  And while their first focus is on building NLp tech that can understand semantic structure and perform granular linguistic analysis, patel says they may also expand to other areas - such as program synthesis - to add more abilities to the ApI in future.
  Funding wise, they're still in the process of closing out their seed but have taken funding from multiple investors at this point - including First Round Capital's Dorm Room Fund and General Catalyst's Rough Draft Ventures. They'll be looking for more investment after YC demo day, they add.

Buď první, kdo ohodnotí tento článek.

Nový komentář

Přihlásit se
  Ještě nemáte vlastní web? Můžete si jej zdarma založit na

Aktuální články